Lietuviskai



Browse to Deposition facilities

Browse to Characterisation facilities

Projects and Partners

Conferences

Publications


Head of the group
Habil dr. Prof. Adulfas ABRUTIS

Tel: 370-5-2193173
Fax: 3705-2330987
E-mail: adulfas.abrutis@chf.vu.lt

Address: Vilnius University, Faculty of Chemistry, Dep. of Inorganic Chemistry, Naugarduko 24, LT-03225 Vilnius, Lithuania

MOCVD Group:

Ex-researchers/ PhD students/master students:
Dr. Arunas Teiserskis, Dr. Vladimir Sivakov, Dr. Sergej Pasko, Dr. Ausrine Bartasyte, Dr. Anna Zukova, Dr., Mindaugas Lukosius, Dr. Lina Parafianovic, Dr. Rasuole Dirsyte, Dr. Raimondas Galvelis, Zygimantas Salciunas, Tomas Katkus, Martynas Skapas, Sandra Stanionyte, Laimis Silimavicius.

Main scientific activities:

Deposition and characterization of oxide layers, multilayers and superlattices for various applications
Deposition methods:
  • Low pressure Pulsed Injection MOCVD (PI-MOCVD)
  • Atmospheric pressure aerosol-assisted MOCVD (AA-MOCVD)
  • Low pressure modified Hot-Wire MOCVD (HW-MOCVD)
  • Novel - pulsed liquid injection MOCVD (PI-MOCVD) - technique was elaborated together with LMGP, ENSPG-INPG, Grenoble, and developed for the preparation of various oxide layers and multilayered structures. About 15 years of scientific collaboration with LMGP, ENSPG-INPG, Grenoble (~50 common publications).

    Novel technique - combined HW-CVD-PI-MOCVD - was elaborated and developed for depositions of non-oxide and oxide materials.

    OXIDE LAYERS AND MULTILAYERS BY PI-MOCVD

    • High-Tc superconductors
      • high quality YBCO films on various mono-crystalline substrates[ref.1]
      • homogeneous high quality YBCO films on 3 inches LaAlO3 substrates[ref.2]
      • Oriented YBCO films on silver, IBAD and buffered biaxially textured Ni substrates[ref.3]
      • SmBCO films on monocrystalline and IBAD substrates[ref.3a]
    • Buffer layers for YBCO films: CeO2, YSZ, MgO, Y2O3 and various multilayered buffer architectures on sapphire and biaxially textured Ni substrates[ref.4]
    • Thick ZrO2 layers[ref.5]
    • Ferromagnetic BaFe12O19 layers[ref.6]
    • Conducting SrRuO3 films and SrRuO3/YBCO heterostructures[ref.7]
    • High-k dielectrics (Ta2O5, Al2O3, Pr2O3, Pr6O11, HfO2, ZrO2, BaxSr1-xTiO3, Sc2O3, Nd2O3, Gd2O3, Dy2O3, HfAlxOy, HfSixOy, BaTiO3, BaHf1-xTixO3, CeAlO3) )[ref.8]
    • Ferroelectric PbTiO3 layers[ref.8a]
    • Giant magnetoresistant (GMR) oxides: La1-xMnO3 and La1-xSrxMnO3 layers[ref.9]
    • Co3O4[ref.10]
    • SrTiO3/YBCO[ref.11]
    • La1-xSrxMnO3/YBCO[ref.12]
    • SrTiO3/La1-xSrxMnO3[ref.13]
    • La1-xSrxMnO3/SrTiO3/La1-xSrxMnO3[ref.13]
    • La1-xSrxMnO3/SrTiO3/YBCO - spin injection effect[ref.14]
    • (Ta2O5/SiO2)n multilayers[ref.15]
    • Superlattices (YBa2Cu3O7-x/PrBa2Cu3O7-x)n[ref.16]
    • Superlattices (BaTiO3/SrTiO3)n and (La1-xSrxMnO3/SrTiO3)n[ref.17]
    • MOCVD OF PEROVSKITE OXIDE FILMS WITH MIXED IONIC-ELECTRONIC CONDUCTIVITY FOR ULTRA-THIN OXYGEN PERMEABLE MEMBRANES

      By PI-MOCVD [ref.18]
      By AA-MOCVD [ref.19]

      On monocrystalline substrates
      On porous ceramic substrates

      Studied membrane compositions: La1-xSrxFe1-y, (Co,Ni)yO3, La1-xSrxGa1-y, (Co,Ni,Fe,Mg)yO3,
      Ba1-xSrxCo1-yFeyO3, La1-x (Sr,Ca)xMnO3, La2NiO4 and LaNiO3, La1-xSrxCoO3

    MOCVD OF OXYDE FILMS FOR ELECTRO- AND PHOTOCATALYSIS

    • PI-MOCVD
    • AA-MOCVD

  • Transparent conducting Cd2SnO4 films for electrocatalysis[ref.21]
  • InVO4, InTaO4, InVO4 layers for photocatalysis[ref.22]
    • MOCVD OF OXYDE FILMS FOR ACUSTO-ELECTRONIC APPLICATIONS

    • PI-MOCVD
    • AA-MOCVD

  • Epitaxial LiNbO3 and LiTaO3 films[ref. 24]
    • MOCVD OF TRANSPARENT CONDUCTING OXIDES

    • AA-MOCVD
    • Hot-Wire MOCVD

  • Films of In, Ga, Al-doped ZnO and In2O3-ZnO for optoelectronic applications[ref. 25]
    • MOCVD OF CHALKOGENIDE MATERIALS

    • PI-MOCVD
    • Hot-Wire MOCVD

    • GeTe and Ge2Sb2Te5 layers for phase-change memories[ref.23]

      MO PRECURSORS' CHEMISTRY

    • Synthesis, characterisation and MOCVD applications of conventional precursors
      (metal β-diketonates)

    (tmhd - 2,2,6,6-tetramethyl-3,5-heptanedione, acac - acetylacetone, phen - o-phenantroline).

      Al(tmhd)3, Al(acac)3,
      Ba(tmhd)2·2H2O, Ba(tmhd)2tetraglyme, Ba(tmhd)2(phen)2,
      Ca(tmhd)2,
      Ce(tmhd)4,
      Co(tmhd)2, Co(tmhd)3, Co(acac)2H2O, [Co(acac)2]4, Co(acac)3
      Cu(tmhd)2,
      Eu(tmhd)3,
      Fe(tmhd)3, Fe(acac)3
      Ga(tmhd)3, Ga(acac)3
      Ho(tmhd)4,
      K(tmhd), Na(tmhd),
      La(tmhd)3,
      Mg(tmhd)2,
      Mn(tmhd)3,
      Nd(tmhd)3,
      Ni(tmhd)2, Ni(acac)2
      Ru(tmhd)3, Ru(acac)3,
      Sm(tmhd)3,
      Sr(tmhd)2,
      Ti(tmhd)2(O-iPr)2
      Y(tmhd)3,
      Zn(tmhd)2,
      Cd(tmhd)2,
      Zr(tmhd)4,

    • Synthesis, characterisation and MOCVD applications of new precursors[ref.20]

      • Co(acac)2(TMEDA) ) (TMEDA = N,N,N,N- tetramethyl - 1,2 - diaminoethane) - structure determined
      • Co(acac)2(DMAPH) (DMAPH=1-dimethylamino-2-propanol) - structure determined
      • Co(acac)2(DMAEH) (DMAEH=2-dimethylaminoethanol)
      • Co(tmhd)2(TMEDA)
      • Y(tod)3·H2O (tod = 2,7,7-trimethyl-3,5-octanedionates)
      • Cu(tod)2, Cu(tmnd)2
      • Sr(tod)2
      • Ba(tod)2
      • Ti(OiPr)2(tod)2
      • Zr(tod)4
      • Zr(tmnd)4 (tmnd=2,2,8,8-tetramethyl-4,6-nonanedionate)
      • Hf(tod)4
      • Hf3O(ONep)10 (hafnium oxoneopentoxide)
      • Hf(tmnd)4
      • HfAl2(OPri)8(dmae)2 (dmae = N,N-dimethylaminoethoxide) - structure determined
      • HfAl2(OPri)8(dmap)2 (dmap = dimethylaminopropoxide)
      • HfCl2(tmhd)2
      • HfCl(tmhd)3 - structure determined
      • Hf(tmhd)2[N(SiMe3)2]2
      • Hf(tmhd)2(OSiMe3)2
      • Hf(tmhd)2(OSitBuMe2)2 - structure determined
      • Hf(tbob)4 (tbob = tert-butyl-3-oxobutanoate or tert-butylacetoacetate)
      • Sr bis-N,N-di(isopropyl)aminoethylamino-2-penten-4-onate - structure determined
      • Cd(tmhd)2 (TMEDA)

        Design and Construction of laboratory scale pulsed
        injection MOCVD reactors

             Pulsed injection MOCVD technology design is constantly developed for the deposition in various oxide materials or heterostructures. We are offering implementation of budget priced laboratory scale MOCVD reactors in other laboratories.
             Several reactors have been installed in partners laboratories: four in Spain, one in Ireland, one in Portugal and one in Mexico.
             General views of some PI MOCVD systems you can found here: reactors in Vilnius university and reactor installed in Lisbon university, Portugal).


    Last modified: January 5, 2016

    Department of Inorganic Chemistry, Faculty of Chemistry,
    Naugarduko 24, LT-2006 Vilnius, Lithuania

    Vilnius University